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Solitons in triangular and honeycomb dynamical lattices with the cubic nonlinearity
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We study the existence and stability of localized states in the discrete nonlineadiBgeroequation on
two-dimensional nonsquare lattices. The model includes both the nearest-neighbor and long-range interactions.
For the fundamental strongly localized soliton, the results depend on the coordination number, i.e., on the
particular type of lattice. The long-range interactions additionally destabilize the discrete soliton, or make it
more stable, if the sign of the interaction is, respectively, the same as or opposite to the sign of the short-range
interaction. We also explore more complicated solutions, such as twisted localized modes and solutions car-
rying multiple topological chargévortice9 that are specific to the triangular and honeycomb lattices. In the
cases when such vortices are unstable, direct simulations demonstrate that they typically turn into zero-vorticity
fundamental solitons.
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I. INTRODUCTION [40] and, especially, in photonic band-gaBBG) crystals
[41,42. Notice that, in the context of PBG crystals, the rel-

In the past decade, energy self-localization in nonlineaevance of nonlinear effects has recently been highlighted for
dynamical lattices, leading to the formation of solitonlike & square diatomic lattict3].
intrinsic localized mode$lLMs), has become a topic of in-  The above discussion suggests the relevance of a system-
tense theoretical and experimental research. Much of thigtic study of ILMs in the paradigm DNLS model for TA and
work has already been summarized in several reviaws].  HC lattices. The aim of the present work is to address this
It was proposed that this mechanism would be relevant to #sue(including the stability of the ILM solutions for 2D
number of effects such as nonexponential energy relaxatiol@ttices with both short-range and long-range interactions. In
in solids[7], local denaturation of the DNA double strand Sec. Il we discuss the effects of the nonsquare lattice geom-
[8—11], behavior of amorphous materidts2—14, propaga- etry on the fundamental ILM statéhe one centered on a
tion of light beams in coupled optical waveguidd$—17,  lattice sitg, and then explore effects of long-range interac-
or the Self-trapping of vibrational energy in protei[@], tions on this state. In Sec. ”I, we eXpand our considerations
among others. The ILMs also have potential significance irf© other classes of solutions, which are either more general
some crystals, like acetanilide and related orgafil@20.  Ones, such as twisted modes, which are also known in square
The theoretical efforts were complemented by a number of@ttices, or represent states that are specific to the TAand HC
important experimentai works Suggesting the presence a[ﬁiructures, ViZ., discrete vortices. We |dent|fy stable funda-
importance of the ILMs in magnet[@l] and Compiex elec- mental vortices in the TA and HC lattices with VortiCity
tronic material§22] and DNA denaturatiofi23], as well as (SN S=3 andS=5, and with the hexagonal and honey-
in Coupied Opticai Waveguide arrayg4,25 and Josephson comb Shape, respectively. Add|t|0na”y, a triangular vortex is

ladders[26,27. found in the HC lattice, but it is always unstable.
A ubiquitous model system for the study of ILMs is the
discrete nonlinear Schdinger (DNLS) equation(see, e.g., Il. FUNDAMENTAL INTRINSIC LOCALIZED MODES

the review[6] and references thergirWithin the framework

of this model and, more generally, for Klein-Gordon lattices,
it has recently been recognized that physically realistic set- In this work we consider the two-dimensional DNLS
ups require consideration of the ILM dynamics in higherequation with the on-site cubic nonlinearity,

spatial dimensiong28-37. In the most straightforward two-

A. The model

dimensional(2D) case, almost all of these studies, with the il =—C 4+ KCi — 2

exception of Refs[38,39, were performed for square lat- Yom <n%'> Yorm Unm Yl

tices. However, it was stressed in Re#8,39 that nonsquare

geometries may be relevant to a variety of applications, rang- _ K(hJin=n" 2+ (m=—md . (1
ing from the explanation of dark lines in natural crystals of nzm (h( ) - (1)

muscovite mica, to sputterin@jection of atoms from a crys-

tal surface bombarded by high-energy partiglend, poten- The subscripts r{,m) attached to the completenvelopg¢
tially, even to high-temperature superconductivity in layeredfield ¢ are two discrete spatial coordinat€sis the constant
cuprates. In addition, it has been well recognized that trianef the linear coupling between nearest-neighbor sites, the
gular (TA) and hexagonalor honeycompHC) lattices are  summation over which is denoted Hy--), andk is the
relevant substrate structures in a number of chemical systent®ordination numbefi.e., the number of nearest neighbors
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Unm=EXPiAt)Upp. (2

The substitution of Eq(2) into Eg. (1) leads to a time-
independent equation for the amplitudgs,. The stationary
solution being known, one can perform the linear-stability
analysis around it in the same way as has been done for the
square latticg45—47), assuming a perturbed solution in the
form

()

wherew,,, is a perturbation with an infinitesimal amplitude
e. Deriving the leading-order equation fow,,, and
looking for a relevant solution to it in the fornw,,
=apmexp(—int)+bymexplwn,t) (where the eigenfrequency
w is, generally speaking, complgrone arrives at an eigen-
value problem fo{w,(a,m,bhm}:

Unm=expli At) (Upmt €Wy,

way,=—C 2 an’,m’+kcanm_2|unm|2anm

(n’,m")
+Aapm— U2 0k, 4
- w*bnmz -C E bn',m’ + I(Cbnm_ 2| unm|2bnm
(n",m")
+Abpm—UZ Lahn. 5

The inclusion of long-range effects into the linear-stability
equations is straightforward. As the long-range coupling is
accounted for by a linear operator acting on the complex

FIG. 1. The top panel shows a cell of the triangular configura-_. - — 7 — 7
tion incorporating six nearest neighbors of a given site. Similarly,fleld’ terms, 5 K(h \/('7 2n )"+ (m=m)9)aym  and
one of the two possible configurations of neighbors in the honey-— K(hy(n—n") +(m—m )9)bnmy are to be added to Egs.
comb lattice is shown in the bottom panel. An alternative possibility(4) and(5), respectively.

in the latter case involves one neighbor along the negatiagis
and two neighbors along directions atm/3 angles with the posi-

tive y axis (if we place the central site at the origin of the coordinate

systen.

which takes the valuek=6 for the TA lattice(see the left
panel of Fig. 1, k=4 for the square lattice, arid=3 for the
HC one(see the right panel of Fig.)1The functionK rep-

B. ILMs in models with nearest-neighbor interactions

Fundamentalsingle-site-centergdiLM solutions to the
stationary equations were constructed by means of a
Newton-type method, adjusted to the nonsquare geometry of
the TA and HC lattices. For the results presented here, we fix
the frequency to b =1 and vary the coupling consta@f
as one of the two parametera\ (and C) can always be

resents a kernel of the long-range linear coupling, &nd scaled out from the stationary equations. We started from

=1/,/C is the lattice spacing.

obvious single-site solutionsvith |u|=\A=1) at the anti-

It is worth noting here that the TA network is a simple continuum limit corresponding t€=0 [48], and then con-

Bravais lattice with the coordinates of the grid nodes,
=h(n+m/2) andy,,=+3hm/2 (see also Ref[41]). The

tinued the solution to finiteC. Subsequently, the stability
analysis was performed using E@4) and(5) for the corre-

same is true for the most commonly used square latticesponding lattice.

which hasx,,,=nh, y,n,=mh, butnot for the HC structure,
a simple representation of whidfor h=1) is x,m,=3m,
Yom=(1/4)6n—5+(—1)""M]. More information on the

Typical examples of stable and unstable fundamental
ILMs found in both the TA and HC lattices are displayed, by
means of contour plots, in Fig. 2. The top panel of the figure

last structure(which also represents, for instance, the ar-shows, respectively, stable and unstable solutions, together

rangement of carbon atoms in a layer of graphded its
symmetries can be found in R¢#4].

First, we will look for ILM solutions of the nearest-
neighbor version of the model, settilg=0. Stationary so-
lutions with a frequencyA are sought for in the ordinary
form (see, e.g., Ref6]),

with the associated spectral-plane diagratssowing the
imaginary vs real parts of the eigenfrequengidsr the TA
lattice with C=0.1 (top subplots and C=0.7 (bottom sub-
plots). Stable and unstable solutions in the HC lattice are
shown in the bottom panel of Fig. 2 f@=0.1 (top sub-
plots) and atC=1.6 (bottom subplots
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FIG. 2. Single-site-centered fundamental ILMs in the triangular and honeycomb lattices. In the top panel of the figure, the solutions in
the triangular lattice are displayed for two casés: 0.1 in the top row, an€=0.7 in the bottom row. The left subplot in each case shows
a checkerboard contour plot of the solution proper, and the right subplot shows the spectrakplang ¢6f the corresponding eigenfre-
guenciesw (the subscripts andi stand for the real and imaginary parts of the eigenfrequeritys seen that the solution is stable for
C=0.1, and unstable fa€=0.7. Similar results are displayed in the bottom panel of the figure for the honeycomb lattice. A stable solution
is shown forC=0.1 in the top row, and an unstable one @ 1.6 in the bottom row. Notice that the contour plots show a “negative image”
of the solution. The grayscale in all the contour plots presented in this work is used to denote amplitude.
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A natural way to understand the stability of the ILMsisto '# - - - - - -

trace the evolution and bifurcations of the eigenfrequencies
and associated eigenmodes with the increase of the neares
neighbor couplingC. For the square lattice, we find, in line
with results of Refs[28,36], that a bifurcation generating an
internal mode from the edge of the continuous specttilva
edge is atw=A=1) in the corresponding ILM occurs at a
critical value C=0.4486. As the coupling is further in-
creased, the pair of corresponding eigenfrequencies move
toward the origin of the spectral plane, where they collide
and bifurcate into an unstable pair of imaginary eigenfre-

08

guencies aC=A (i.e., atC=1 in the present notationso
that the ILM in the square lattice is unstable for-1.

In the TA and HC lattices, the scenario is found to be
quite similar. For the former lattice, the bifurcation of the
two eigenfrequencies from the continuous band g@dech
is depicted by the dash-dotted ljnand their trajectory, as
they change from real, i.e., stalitbe solid ling, into imagi-
nary, i.e., unstabléthe dashed ling are shown in the top

panel of Fig. 3. The bottom panel shows the same trajectory 12f

for the HC lattice. The pair of eigenvalues bifurcatesCat
=0.2974 in the TA lattice, and they reach the origin, giving
rise to the instability, at a point close @=0.63. In the HC
lattice, the bifurcation giving rise to the originally stable ei-
genvalues occurs &=0.6247; they collide at the origin and
become unstable & =1.505.

One can clearly identify the effect of geometry in these

results. In particular, since the instability occurs beyond the

critical values of the coupling, it is the linear interaction

between the neighbors that drives it. Consequently, since th
coordination numbers for the different lattices are ordered as °2f

Kiriang™ Ksquare™ Knoney, the instability thresholdgcritical val-
ues of the coupling constanfor these lattices should be

ordered converselg {5 < CL < C(& . A similar under-

standing of the effect of the coordination number on the

norm of the solutionP?=N=23, |un./? justifies the re-
sults displayed in Fig. 4: the larger number of neighbor
endows the TA brancltsolid line) with a larger norm than
the square onddash-dottej which, in turn, has a larger
norm than the HC latticédashegl

C. ILMs in lattices with long-range interaction

Recently, a lattice model with a long-range coupling,
which is relevant to magnon-phonon, magnon-libron, an
exciton-photon interactions, was introduced in HdB]. In

the framework of this model, it has been concluded that th%

relevant coupling kerndlsee Eq.(1)] is

K(hy(n—n")?+(m—-m")?)

=FoKo(ahy(n—n")Z+(m-m")?),  (6)
whereF, is the amplitude of the kernely ! measures the
range of the interaction, ari€, is the modified Bessel func-
tion. We will use this kernel below.

Inserting the kerne(6) into Eqg. (1), one can see how the
behavior of the branch is modified as a functionFgffor a
given fixed value of the nearest-neighbor couplihig\otice
that similar resultgbut on a logarithmic scalewill be ob-
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FIG. 3. The top panel shows the evolution of the two eigenfre-
guencies of the fundamental ILM in the triangular lattice. The ei-
genvalues emerge from the edge of the continuous specat
=0.2974) and move toward the origin, which they hitGx0.63,
giving rise to an unstable pair of imaginary eigenfrequencies. The
absolute value of the eigenfrequencies is shown by the solid line
when they are realstablg, and by the dashed line when they are
imaginary(unstable. The dash-dotted line indicates the edge of the
continuous-spectrum band. The bottom panel shows the same for
he ILM in the honeycomb lattice. In this case, the stable eigenval-
ues emerge a€~0.6247, and they become unstable imaginary
ones, hitting the origin a€=1.505. In both panels, the two next
airs of eigenvaluegwhich are always found inside the phonon
band are also shown for comparison, by the dotted lines.

tained if « is varied, whileF, is kept fixed, as detailed in
Ref.[49]. Thus, we fixa= 0.1 hereafter.

In Fig. 5, we show the evolution of the numerically found
internal-mode eigenvalues of the ILM as a functionFgf,
for fixed C=0.1. It can be observed that the increasd-gf
leads to an instability foFF;>0.01425. The bottom panel
shows the configuration and its internal-eigenmode fre-
guency forF,=0.015, when the configuration is already un-
stable. By carefully zooming into the ILMs in the case of
long-range interaction@ata not shown heyeone can notice

016609-4
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FIG. 6. A two-parameter stability diagram for the ILM in the

FIG. 4. The norm of the fundamental ILM solutions in the TA, L ) . e
square, and HC lattices vs the coupling constant. The triangular/©del combining long- and short-range interactions. The stability

square-, and honeycomb-lattice branches are shown, respectiverﬁgion is located beneath the curve. The results pertain to the trian-
by the solid, dash-dotted, and dashed lines. gular lattice. For the honeycomb lattice, similar results can be ob-

tained.

a “tail” of the ILM, much longer than the size of the ILM in )
the case of the nearest-neighbor interaction, which is a natfOMPete with each othdsee also Refl49)).

ral consequence of the nonlocal character of the interaction One can extend the a_bove considerations to the case
in the present case. Féf,>0, we thus conclude that the where bothFy andC are varied and construct two-parameter

long-range interaction “cooperates” with the short-rangediagrams, separating stability and instability regions. An ex-
one, lowering the instability threshold. On the contrary, nu-2MPI€ is shown for the TA lattice in Fig. 6. For a fixedthe
merical results foF ;<0 show that the onset of the instabil- c'itical valueé €o)¢, was identified beyond which the ILM is

ity is delayedwhen the long- and short-range interactionsunStable' Thus, i_n Fig. 6 ILMs are stable below the curve and
unstable above it.

1.4 T T T T T T T T

12r 1 Ill. MULTIPLE-SITE ILMS
10 4
S0°f oo o 4 § We now turn our attention to solutions comprising many
osf ° o 1 sites of the lattice. In this case too, the solutions are initially
04f ° o . constructed in the anticontinuum lim@=0, and then ex-
ozr © o * ] tended through continuation to finite values@f
cO * 0.;02 * 0.;04 * 0.;06 * 0.(;08'; 0.;1 * 0.;12 * 0.;14 0.8\16 0.018
g A. Twisted localized modes
50 /;// /j///;///;/;///;//;;/////;/ os o First, we examine the so-called twisted localized modes
w I || | (TLMs), which were originally introduced, in the context of
o %ﬁ%ﬁ j‘; - ] 1D lattices, in Refs[50,51. Later, they were studied in more
| iy e [—RTQ, Cm— detail in Ref.[52], and their stability was analyzed in Ref.
Priistitttiieeeeiss ) [53]. They were subsequently used to construct topologically
10/7/;////;////;/;///;/;/;////7/7 o charg_ed 2D solitongvortice9 in the square-lattice DNLS
20 40 60 8 <2 03 - 0 ; 3 equation in[54].
X o In the case of the square lattice, and subject to the same

normalization as adopted above, i.e., with=1, TLMs are

FIG. 5. Top panel: the variation of the internal-mode elgenfre-found to be stable foE<0.125. If the coupling exceeds this

quencyw for the fundamental ILM vs the amplitude of the long- itical val illat instabilit hich i ifested
range interactiorF, for C=0.1. The stars and circles denote the criical vajue, an oscillatory instability, which 1S maniieste

real and imaginary parts of the eigenvalue. It can be seen that, whil rough "?‘ quartet of CO[“P'eX elgenvaIL[55], arises O“_Je to
the ILM is stable atF,=0, an instability sets in a,=0.014 25,  the collision of the TLM's internal mode with the continuous
The left part of the bottom panel shows thmstable ILM configu- ~ SPectrumithe two have oppositirein signatureg2,47]), as
ration, in a grayscale contour pl@f the amplitudg, and the cor- Nas been detailed in R¢63]. The same scenario is found to
responding spectral planes(, ;) of the eigenmodes is shown in Occur in the TA lattice. However, in the latter case the oscil-
the right part. These results pertain to the triangular lattice. Oncéatory instability sets in aC~0.1, and the destabilization is
again, the contour plot shows the “negative image” of the solution,a result of the collision of the eigenvalues with those that
for clarity. have (slightly) bifurcated from the continuous spectrum
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. . FIG. 8. The same as Fig. 7, but for the honeycomb lattice. The
FIG. 7. The t | sh th lut I t .
€ top panel shows the solutidop subplot and its top panel shows the solution @t=0.2; the bottom panel shows the

stability (bottom subplot for a TLM in the triangular lattice a€ dist f the int -mode eigent ; the band ed
=0.2. One can readily observe the presence of the oscillatory in- Istance of Ihe intermal-mode eigenirequency from the band edge

stability in the eigenfrequency spectrum. The bottom panel showgs.OIid ling), and the absolute value of the imaginary part of the
the crii/ical eigen?reque?lcy v: thpe coupling consté‘,ntTtFw)e solid eigenvalue quartet fo€ >0.1375(dashed ling

line shows the distance of the eigenfrequency from the band edge of

the continuous spectrum. After the collision, which takes place at It should be remarked that, in the 2D lattice, the TLMs are
C=0.1, a quartet of complex eigenvalues emerges; the absolutgolutions carrying vorticity(topological chargeS=1 [54]
value of their imaginary part is shown by the dashed line. (although they are different from vortices proper; see bglow
The simplest way to see this is by recognizing that TLM
configurations emulate the continuum-limit expression#;0s
where 6 is the angular coordinate in the 2D plane, i.e., the
real part of exp), the latter expression carrying vorticity 1.
It should also be added that, after the onset of the oscillatory
?ﬁétability, TLM solutions have been found to transform

(rather than with the edge of the continuous spectrurm at
=1, as in the square lattice

Similarly, in the HC lattice, the instability of TLMs sets in
at C=0.1375. Notice that the instability thresholds follow
the same ordering as the ones discussed in the previous s

tion. This can be justified by a similar line of arguments asy . calves into the fundamentaingle-site-centerddLM

given before. The TLM in the TA latticéand its stability is confi : C : - :

. . . X gurations, which is possible as the topological charge is
displayed in the top panel of Fig. 7 f@&=0.2, which ex- not a dynamical invariant in latticé§4,56).

ceeds the instability threshold. The bottom panel of the figure '

shows the variatiorfas a function of the couplin@) of the
critical eigenfrequency. The real stable eigenfrequency, and
the imaginary part of the unstable ones, after the threshold Going beyond TLMs, it is appropriate to consider possible
has been crossed, are shown, respectively, by solid ardttice solitons which conform to the symmetry of the TA or
dashed lines. Figure 8 displays analogous results for the HEIC lattice. In fact, these are the most specific dynamical
lattice. The solution is shown &=0.2 in the top panel. modes supported by the lattices. Examples of this sort in the

B. Hexagonal and triangular vortex solitons

016609-6
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/777
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o 4+ [¢] 1 O 1
\ ) “
o (o)
50 100 150 200
t
= // // / 1 ] FIG. 10. The time evolution of the unstable solution from Fig. 9
o / o5 05 (for C=0.218) is shown here for the triangular lattice. The top left
2 panel shows the solution &t=200. The “negative image” of the
> 45 7 77 °© & o e ©0O0O® am solution is shown once again for clarity. The top right panel shows
40 77 77 05 o8 the time evolution of the center-of-mass coordinates of
% 77777 ’ the soliton, defined asx.==, N|Unml?ZnmlUnm? Ve
0 - 4 =31 M Un ml?/Zn mlUn ml2. The two bottom panels show the evo-
60 70 80 90 100 -2 -1 0 1 2 . ! RTE . . .
o lution of the real(solid line) and imaginary(dashed ling parts of
the lattice field at two sites closest to the soliton’s cefgabscripts
<0 “r 5 1 and 2 pertain, respectively, to the sitess10, m=11 andn
2 1 o2 =10, m=9). A clear conclusion is that the instability sets intat
° o ~50, and it eventually results in the transformation of the hexago-
> 20 0 @ o e o G nal ILM into a stable fundamental ILM localized around a single
° ° lattice site.
15 -0.2
-1
o o
fof=2 3 i 04— = = 4 jump from+1 to —1_ can be identified as & phase change
X o that the whole solution has a total phase changemft&nce

its topological chargévorticity or “spin” ) is S=3. Then, the

FIG. 9. The top panel shows the anticontinuum-limit profile of PréSence of three qscillatory instabilities agrees with a recent
the topologically charged hexagonal ILM in the triangular lattice CONjecture[56], which states that the number of negative-
(and a contour around the solution; each line in the contour reprekrein-sign eigenvaluegand hence the number of potential
sents a phase change #Y. The bottom panel shows two examples
of such a soliton. The solution is in each case shown in a grayscale s
contour plot on the left, while its eigenfrequency spectrum is shown  ,,
on the right. The top subplot of the bottom panel corresponds to the
stable soliton aC=0.038, while the bottom subplot represents an -,
unstable one a€=0.218. In the latter case, thréim terms of the 50
geometric multiplicity; the algebraic multiplicity is fiyejuartets of 2
eigenvalues have become unstable.

60

30
4

0.15 T T T ) T T T

TA lattice are the “hexagonal” ILMs shown in Fig. 9. The il i
top panel of the figure shows the profile of these modes in  oos} 1
the anticontinuum limit, and the bottom panel displays two _ of —— © o 0 0 enm— ]
actual examples of these modes. The top subplot shows th™-oosf ]
hexagonal ILM forC=0.038, when it is stable, while the ' ]

bottom subplot shows the mode@t=0.218, after the onset [ . . . ° . . . ]

of three distinct oscillatory instabilities. The first and second -2 -15 =1 -05 3 05 1 15 2
instabilities set in atC~0.064 andC~0.084, respectively, '

while the final eigenvalue quartet appear£at 0.184. FIG. 11. A triangular ILM solution in the honeycomb lattice,

Measuring the topological charge of this solution aroundand the corresponding spectral plane, are showrCfei0.09. So-
the contour in the top panel of Fig. 9, we filsince each lutions of this type were found to be unstable fdr values ofC.
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P 05 FIG. 13. The evolution of the unstable honeycomb-shaped ILM
configuration forC=0.43. The panels have the same meaning as in
Fig. 10. The lattice-field configuration is shown in the top left panel
| P — for t=500. One predominant single-site pulse is present in the con-
figuration. The other three panels show the time evolution of the
center-of-mass coordinates and of the real and imaginary parts of
P the field at specific lattice sitéas in Fig. 10, clearly indicating that
o8 05 1 the instability sets in at~ 60.
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issue, we performed direct numerical simulations for
o2 ° o =0.218. Results are shown in our subplots of Fig. 10. In
1 or o o particular, the top left panel shows the solutiori-a200 (the
configuration att=0 was the unstable hexagonal ILMt
¥ S o o ° can clearly be observed that the instability that sets in around
02 | x10 t~50 (according to the other three subploteansforms the
03 R hexagonal vortex into a fundamentaero-vorticity) ILM;
= = recall that such an outcome of the instability development is
X o, possible because the vorticity i@t conserved in lattice sys-
tems[54].

FIG. 12. The top panel shows the profile of the honeycomb- For the HC lattice, a vortex soliton of a triangular form
shaped ILM in the anticontinuum limit in the honeycomb lattice, was found; such an example is shown in Fig. 11 @r
together with a contour around the solution. Each line in the contourr0.09. We have found that this solution is unstable dbtr
represents a phase changeyadding up to 1&; hence the solu- valuesof C.
tion has vorticityS=5. An actual solution is shown in the bottom  Another vortex soliton, with a honeycomb shape, was also
panel for C=0.0475, when it is linearly stable, having five found in the HC lattice; see Fig. 12. This onesisbleat a
negative-Krein-signature internal modgésp subplot. The bottom  sufficiently weak coupling. If a contour is drawn around this
subplot of the bottom panel pertains to the c@se0.43, where all  splution (shown in the top panel of the figure for the anti-
five oscillatory instabilities have developed. Four quartets of eigencontinuum limid, the net phase change is found to ber10
frequencies are clearly Qiscernible. The fifth quartet is shown in thg,ance the corresponding topological chargé&iss. In ac-
inset of the corresponding spectral-plane plot. cordance with the conjecture mentioned above, when the so-

lution is stable, we find five internal modes with negative
oscillatory instabilities coincides with the topological charge Krein signature. These modes eventually lead, as the cou-
of the 2D lattice soliton. However, if one examines morepling is increased, to five oscillatory instabilities. In the bot-
carefully the stability picture, one finds that, due to the sym+tom panel of Fig. 12, the top subplot shows the case with
metry of the solution, two of these eigenvalues have multi-C=0.0475, when the honeycomb-shaped vortex soliton in
plicity 2. Hence, the conjecture needs to be refined, to takéhe HC lattice is linearly stable. The bottom subplot features
into regard the potential presence of symmetries. The conje¢he presence of five eigenvalue quartets in the c@se
ture thus revised states that the topological charge of the=0.43, when all five oscillatory instabilities have been acti-
solution should be equal to the geomethat not necessarily vated. The first instability occurs &= 0.085, the second at
algebrai¢ multiplicity of the eigenvalues with negative 0.1, the third at 0.1375, the fourth at 0.2025, and the fifth sets
Krein signature. in at C=0.4025.

It is natural to ask then to what configuration this hexago- To illustrate the result of the development of the instabil-
nal ILM will relax once it becomes unstable. To address thety of the latter vortex in the case in which it is unstable, we
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have again resorted to direct numerical integration of(Eg.  ing regions of stability and instability in the presence of both
An example is shown in Fig. 13 f@=0.43. Att~500, only  the short- and long-range coupling.

one main pulse is sustained. Hence, in this case too, the More complicated lattice solitons, which essentially ex-
multiply charged topological soliton is transformed, throughtend to several lattice sites, were also examined. A prototypi-
the instability, into the stabléor this value ofC) fundamen- cal example of the extended solitons are twisted modes, for

tal zero-vorticity ILM. which the phenomenology was found to be similar to that in
the square lattice, but with, once again, appropriately shifted
IV. CONCLUSION thresholds. We have also examined solutions with a higher

) ) _ _  topological charge, which play the role of fundamental vor-

In this work, we have studied a paradigm nonlinear lattic&;ces in the triangular and honeycomb lattices, their vorticity
dynamical model, namely, the DNLS equation, in two spatialyeing, respectivelyS=3 and S=5. The stability of these
dimensions for nonsquare lattices. The triangular and honeyyortices was studied in detail. When instabilities occurred,
comb networks were considered, as the most important etheir outcome was examined by means of direct time inte-
amples of Bravais and non-Bravais 2D lattices, which argyration, showing the transformation into a simple fundamen-
relevant to chemical and optical applications. tal soliton with zero vorticity.

In the case of nearest-neighbor interactions, it was found Fyrther steps in the study of localized modes in these
that the instability thresholds for the fundamental solutionnoniinear lattices may address traveling discrete solitons, as
centered at a single lattice site depend on the coordinatiofye|| as generalization to the three-dimensional case. In terms

smaller value of the coupling constant than in the squargn nonsquare lattices are relevant.

lattice, while the opposite is true for the honeycomb lattice.

The effect of the long-range interactions was also examined

in this context. It was fou_nd tha_t.th(.ese interactions accelerate ACKNOWLEDGMENT

or delay the onset of the instability if they have the same sign

as the nearest-neighbor coupling, or the opposite sign. Dia- The authors are grateful to J. C. Eilbeck for a number of
grams in the two-parameter plane were constructed identifystimulating discussions.
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