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Solitons in triangular and honeycomb dynamical lattices with the cubic nonlinearity
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We study the existence and stability of localized states in the discrete nonlinear Schro¨dinger equation on
two-dimensional nonsquare lattices. The model includes both the nearest-neighbor and long-range interactions.
For the fundamental strongly localized soliton, the results depend on the coordination number, i.e., on the
particular type of lattice. The long-range interactions additionally destabilize the discrete soliton, or make it
more stable, if the sign of the interaction is, respectively, the same as or opposite to the sign of the short-range
interaction. We also explore more complicated solutions, such as twisted localized modes and solutions car-
rying multiple topological charge~vortices! that are specific to the triangular and honeycomb lattices. In the
cases when such vortices are unstable, direct simulations demonstrate that they typically turn into zero-vorticity
fundamental solitons.
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I. INTRODUCTION

In the past decade, energy self-localization in nonlin
dynamical lattices, leading to the formation of solitonlik
intrinsic localized modes~ILMs!, has become a topic of in
tense theoretical and experimental research. Much of
work has already been summarized in several reviews@1–6#.
It was proposed that this mechanism would be relevant
number of effects such as nonexponential energy relaxa
in solids @7#, local denaturation of the DNA double stran
@8–11#, behavior of amorphous materials@12–14#, propaga-
tion of light beams in coupled optical waveguides@15–17#,
or the self-trapping of vibrational energy in proteins@18#,
among others. The ILMs also have potential significance
some crystals, like acetanilide and related organics@19,20#.
The theoretical efforts were complemented by a numbe
important experimental works suggesting the presence
importance of the ILMs in magnetic@21# and complex elec-
tronic materials@22# and DNA denaturation@23#, as well as
in coupled optical waveguide arrays@24,25# and Josephson
ladders@26,27#.

A ubiquitous model system for the study of ILMs is th
discrete nonlinear Schro¨dinger ~DNLS! equation~see, e.g.,
the review@6# and references therein!. Within the framework
of this model and, more generally, for Klein-Gordon lattice
it has recently been recognized that physically realistic
ups require consideration of the ILM dynamics in high
spatial dimensions@28–37#. In the most straightforward two
dimensional~2D! case, almost all of these studies, with t
exception of Refs.@38,39#, were performed for square la
tices. However, it was stressed in Ref.@38,39# that nonsquare
geometries may be relevant to a variety of applications, ra
ing from the explanation of dark lines in natural crystals
muscovite mica, to sputtering~ejection of atoms from a crys
tal surface bombarded by high-energy particles!, and, poten-
tially, even to high-temperature superconductivity in layer
cuprates. In addition, it has been well recognized that tri
gular ~TA! and hexagonal~or honeycomb, HC! lattices are
relevant substrate structures in a number of chemical sys
1063-651X/2002/66~1!/016609~10!/$20.00 66 0166
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@40# and, especially, in photonic band-gap~PBG! crystals
@41,42#. Notice that, in the context of PBG crystals, the re
evance of nonlinear effects has recently been highlighted
a square diatomic lattice@43#.

The above discussion suggests the relevance of a sys
atic study of ILMs in the paradigm DNLS model for TA an
HC lattices. The aim of the present work is to address t
issue~including the stability of the ILM solutions!, for 2D
lattices with both short-range and long-range interactions
Sec. II we discuss the effects of the nonsquare lattice ge
etry on the fundamental ILM state~the one centered on
lattice site!, and then explore effects of long-range intera
tions on this state. In Sec. III, we expand our considerati
to other classes of solutions, which are either more gen
ones, such as twisted modes, which are also known in sq
lattices, or represent states that are specific to the TA and
structures, viz., discrete vortices. We identify stable fun
mental vortices in the TA and HC lattices with vorticit
~spin! S53 andS55, and with the hexagonal and hone
comb shape, respectively. Additionally, a triangular vortex
found in the HC lattice, but it is always unstable.

II. FUNDAMENTAL INTRINSIC LOCALIZED MODES

A. The model

In this work we consider the two-dimensional DNL
equation with the on-site cubic nonlinearity,

i ċnm52C (
^n8,m8&

cn8m81kCcnm2ucnmu2cnm

2 (
n8,m8

K ~hA~n2n8!21~m2m8!2!cn8m8 . ~1!

The subscripts (n,m) attached to the complex~envelope!
field c are two discrete spatial coordinates,C is the constant
of the linear coupling between nearest-neighbor sites,
summation over which is denoted by^•••&, and k is the
coordination number~i.e., the number of nearest neighbors!,
©2002 The American Physical Society09-1
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which takes the valuesk56 for the TA lattice~see the left
panel of Fig. 1!, k54 for the square lattice, andk53 for the
HC one~see the right panel of Fig. 1!. The functionK rep-
resents a kernel of the long-range linear coupling, andh
[1/AC is the lattice spacing.

It is worth noting here that the TA network is a simp
Bravais lattice with the coordinates of the grid nodesxnm

5h(n1m/2) and ynm5A3hm/2 ~see also Ref.@41#!. The
same is true for the most commonly used square latt
which hasxnm5nh, ynm5mh, but not for the HC structure,
a simple representation of which~for h51) is xnm5A3m,
ynm5(1/4)@6n251(21)n1m#. More information on the
last structure~which also represents, for instance, the
rangement of carbon atoms in a layer of graphite! and its
symmetries can be found in Ref.@44#.

First, we will look for ILM solutions of the nearest
neighbor version of the model, settingK[0. Stationary so-
lutions with a frequencyL are sought for in the ordinary
form ~see, e.g., Ref.@6#!,

FIG. 1. The top panel shows a cell of the triangular configu
tion incorporating six nearest neighbors of a given site. Simila
one of the two possible configurations of neighbors in the hon
comb lattice is shown in the bottom panel. An alternative possibi
in the latter case involves one neighbor along the negativey axis
and two neighbors along directions at6p/3 angles with the posi-
tive y axis~if we place the central site at the origin of the coordina
system!.
01660
e,

-

cnm5exp~ iLt !unm . ~2!

The substitution of Eq.~2! into Eq. ~1! leads to a time-
independent equation for the amplitudesumn . The stationary
solution being known, one can perform the linear-stabil
analysis around it in the same way as has been done fo
square lattice@45–47#, assuming a perturbed solution in th
form

cnm5exp~ iLt !~unm1ewnm!, ~3!

wherewnm is a perturbation with an infinitesimal amplitud
e. Deriving the leading-order equation forwnm , and
looking for a relevant solution to it in the formwnm

5anm exp(2ivt)1bnmexp(ivnm
! t) ~where the eigenfrequenc

v is, generally speaking, complex!, one arrives at an eigen
value problem for$v,(anm ,bnm

! )%:

vanm52C (
^n8,m8&

an8,m81kCanm22uunmu2anm

1Lanm2unm
2 bnm

! , ~4!

2v!bnm52C (
^n8,m8&

bn8,m81kCbnm22uunmu2bnm

1Lbnm2un,m
2 anm

! . ~5!

The inclusion of long-range effects into the linear-stabil
equations is straightforward. As the long-range coupling
accounted for by a linear operator acting on the comp
field, terms 2K „hA(n2n8)21(m2m8)2

…an8m8 and
2K „hA(n2n8)21(m2m8)2

…bn8m8 are to be added to Eqs
~4! and ~5!, respectively.

B. ILMs in models with nearest-neighbor interactions

Fundamental~single-site-centered! ILM solutions to the
stationary equations were constructed by means o
Newton-type method, adjusted to the nonsquare geometr
the TA and HC lattices. For the results presented here, we
the frequency to beL51 and vary the coupling constantC,
as one of the two parameters (L and C) can always be
scaled out from the stationary equations. We started fr
obvious single-site solutions~with uuu5AL[1) at the anti-
continuum limit corresponding toC50 @48#, and then con-
tinued the solution to finiteC. Subsequently, the stability
analysis was performed using Eqs.~4! and~5! for the corre-
sponding lattice.

Typical examples of stable and unstable fundamen
ILMs found in both the TA and HC lattices are displayed,
means of contour plots, in Fig. 2. The top panel of the figu
shows, respectively, stable and unstable solutions, toge
with the associated spectral-plane diagrams~showing the
imaginary vs real parts of the eigenfrequencies!, for the TA
lattice with C50.1 ~top subplots! and C50.7 ~bottom sub-
plots!. Stable and unstable solutions in the HC lattice a
shown in the bottom panel of Fig. 2 forC50.1 ~top sub-
plots! and atC51.6 ~bottom subplots!.
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SOLITONS IN TRIANGULAR AND HONEYCOMB . . . PHYSICAL REVIEW E 66, 016609 ~2002!
FIG. 2. Single-site-centered fundamental ILMs in the triangular and honeycomb lattices. In the top panel of the figure, the sol
the triangular lattice are displayed for two cases:C50.1 in the top row, andC50.7 in the bottom row. The left subplot in each case sho
a checkerboard contour plot of the solution proper, and the right subplot shows the spectral plane (v r ,v i) of the corresponding eigenfre
quenciesv ~the subscriptsr and i stand for the real and imaginary parts of the eigenfrequency!. It is seen that the solution is stable fo
C50.1, and unstable forC50.7. Similar results are displayed in the bottom panel of the figure for the honeycomb lattice. A stable s
is shown forC50.1 in the top row, and an unstable one forC51.6 in the bottom row. Notice that the contour plots show a ‘‘negative ima
of the solution. The grayscale in all the contour plots presented in this work is used to denote amplitude.
016609-3
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A natural way to understand the stability of the ILMs is
trace the evolution and bifurcations of the eigenfrequenc
and associated eigenmodes with the increase of the nea
neighbor couplingC. For the square lattice, we find, in lin
with results of Refs.@28,36#, that a bifurcation generating a
internal mode from the edge of the continuous spectrum~the
edge is atv5L[1) in the corresponding ILM occurs at
critical value C50.4486. As the coupling is further in
creased, the pair of corresponding eigenfrequencies m
toward the origin of the spectral plane, where they coll
and bifurcate into an unstable pair of imaginary eigenf
quencies atC5L ~i.e., atC[1 in the present notation!, so
that the ILM in the square lattice is unstable forC.1.

In the TA and HC lattices, the scenario is found to
quite similar. For the former lattice, the bifurcation of th
two eigenfrequencies from the continuous band edge~which
is depicted by the dash-dotted line! and their trajectory, as
they change from real, i.e., stable~the solid line!, into imagi-
nary, i.e., unstable~the dashed line!, are shown in the top
panel of Fig. 3. The bottom panel shows the same trajec
for the HC lattice. The pair of eigenvalues bifurcates atC
50.2974 in the TA lattice, and they reach the origin, givi
rise to the instability, at a point close toC50.63. In the HC
lattice, the bifurcation giving rise to the originally stable e
genvalues occurs atC50.6247; they collide at the origin an
become unstable atC51.505.

One can clearly identify the effect of geometry in the
results. In particular, since the instability occurs beyond
critical values of the coupling, it is the linear interactio
between the neighbors that drives it. Consequently, since
coordination numbers for the different lattices are ordered
ktriang.ksquare.khoney, the instability thresholds~critical val-
ues of the coupling constant! for these lattices should b
ordered conversely,Ctriang

(cr) ,Csquare
(cr) ,Choney

(cr) . A similar under-
standing of the effect of the coordination number on
norm of the solution,P25N[(m,nuumnu2, justifies the re-
sults displayed in Fig. 4: the larger number of neighb
endows the TA branch~solid line! with a larger norm than
the square one~dash-dotted!, which, in turn, has a large
norm than the HC lattice~dashed!.

C. ILMs in lattices with long-range interaction

Recently, a lattice model with a long-range couplin
which is relevant to magnon-phonon, magnon-libron, a
exciton-photon interactions, was introduced in Ref.@49#. In
the framework of this model, it has been concluded that
relevant coupling kernel@see Eq.~1!# is

K ~hA~n2n8!21~m2m8!2!

5F0K0~ahA~n2n8!21~m2m8!2!, ~6!

whereF0 is the amplitude of the kernel,a21 measures the
range of the interaction, andK0 is the modified Bessel func
tion. We will use this kernel below.

Inserting the kernel~6! into Eq. ~1!, one can see how th
behavior of the branch is modified as a function ofF0 for a
given fixed value of the nearest-neighbor couplingC. Notice
that similar results~but on a logarithmic scale! will be ob-
01660
s
st-

es
e
-

ry

e

he
s

e

s

,
d

e

tained if a is varied, whileF0 is kept fixed, as detailed in
Ref. @49#. Thus, we fixa50.1 hereafter.

In Fig. 5, we show the evolution of the numerically foun
internal-mode eigenvalues of the ILM as a function ofF0,
for fixed C50.1. It can be observed that the increase ofF0
leads to an instability forF0.0.014 25. The bottom pane
shows the configuration and its internal-eigenmode f
quency forF050.015, when the configuration is already u
stable. By carefully zooming into the ILMs in the case
long-range interactions~data not shown here!, one can notice

FIG. 3. The top panel shows the evolution of the two eigenf
quencies of the fundamental ILM in the triangular lattice. The
genvalues emerge from the edge of the continuous spectrum~at C
50.2974) and move toward the origin, which they hit atC'0.63,
giving rise to an unstable pair of imaginary eigenfrequencies. T
absolute value of the eigenfrequencies is shown by the solid
when they are real~stable!, and by the dashed line when they a
imaginary~unstable!. The dash-dotted line indicates the edge of t
continuous-spectrum band. The bottom panel shows the sam
the ILM in the honeycomb lattice. In this case, the stable eigen
ues emerge atC'0.6247, and they become unstable imagina
ones, hitting the origin atC51.505. In both panels, the two nex
pairs of eigenvalues~which are always found inside the phono
band! are also shown for comparison, by the dotted lines.
9-4
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SOLITONS IN TRIANGULAR AND HONEYCOMB . . . PHYSICAL REVIEW E 66, 016609 ~2002!
a ‘‘tail’’ of the ILM, much longer than the size of the ILM in
the case of the nearest-neighbor interaction, which is a n
ral consequence of the nonlocal character of the interac
in the present case. ForF0.0, we thus conclude that th
long-range interaction ‘‘cooperates’’ with the short-ran
one, lowering the instability threshold. On the contrary, n
merical results forF0,0 show that the onset of the instab
ity is delayedwhen the long- and short-range interactio

FIG. 4. The norm of the fundamental ILM solutions in the TA
square, and HC lattices vs the coupling constant. The triangu
square-, and honeycomb-lattice branches are shown, respect
by the solid, dash-dotted, and dashed lines.

FIG. 5. Top panel: the variation of the internal-mode eigenf
quencyv for the fundamental ILM vs the amplitude of the long
range interactionF0 for C50.1. The stars and circles denote t
real and imaginary parts of the eigenvalue. It can be seen that, w
the ILM is stable atF050, an instability sets in atF050.014 25.
The left part of the bottom panel shows the~unstable! ILM configu-
ration, in a grayscale contour plot~of the amplitude!, and the cor-
responding spectral plane (v r ,v i) of the eigenmodes is shown i
the right part. These results pertain to the triangular lattice. O
again, the contour plot shows the ‘‘negative image’’ of the soluti
for clarity.
01660
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compete with each other~see also Ref.@49#!.
One can extend the above considerations to the c

where bothF0 andC are varied and construct two-paramet
diagrams, separating stability and instability regions. An
ample is shown for the TA lattice in Fig. 6. For a fixedC, the
critical value (F0)cr was identified beyond which the ILM is
unstable. Thus, in Fig. 6 ILMs are stable below the curve a
unstable above it.

III. MULTIPLE-SITE ILMS

We now turn our attention to solutions comprising ma
sites of the lattice. In this case too, the solutions are initia
constructed in the anticontinuum limitC50, and then ex-
tended through continuation to finite values ofC.

A. Twisted localized modes

First, we examine the so-called twisted localized mod
~TLMs!, which were originally introduced, in the context o
1D lattices, in Refs.@50,51#. Later, they were studied in mor
detail in Ref.@52#, and their stability was analyzed in Re
@53#. They were subsequently used to construct topologic
charged 2D solitons~vortices! in the square-lattice DNLS
equation in@54#.

In the case of the square lattice, and subject to the s
normalization as adopted above, i.e., withL51, TLMs are
found to be stable forC,0.125. If the coupling exceeds thi
critical value, an oscillatory instability, which is manifeste
through a quartet of complex eigenvalues@55#, arises due to
the collision of the TLM’s internal mode with the continuou
spectrum~the two have oppositeKrein signatures@2,47#!, as
has been detailed in Ref.@53#. The same scenario is found t
occur in the TA lattice. However, in the latter case the os
latory instability sets in atC'0.1, and the destabilization i
a result of the collision of the eigenvalues with those th
have ~slightly! bifurcated from the continuous spectru

r-,
ely,

-

ile

e
,

FIG. 6. A two-parameter stability diagram for the ILM in th
model combining long- and short-range interactions. The stab
region is located beneath the curve. The results pertain to the t
gular lattice. For the honeycomb lattice, similar results can be
tained.
9-5
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KEVREKIDIS, MALOMED, AND GAIDIDEI PHYSICAL REVIEW E 66, 016609 ~2002!
~rather than with the edge of the continuous spectrum av
51, as in the square lattice!.

Similarly, in the HC lattice, the instability of TLMs sets i
at C50.1375. Notice that the instability thresholds follo
the same ordering as the ones discussed in the previous
tion. This can be justified by a similar line of arguments
given before. The TLM in the TA lattice~and its stability! is
displayed in the top panel of Fig. 7 forC50.2, which ex-
ceeds the instability threshold. The bottom panel of the fig
shows the variation~as a function of the couplingC) of the
critical eigenfrequency. The real stable eigenfrequency,
the imaginary part of the unstable ones, after the thresh
has been crossed, are shown, respectively, by solid
dashed lines. Figure 8 displays analogous results for the
lattice. The solution is shown atC50.2 in the top panel.

FIG. 7. The top panel shows the solution~top subplot! and its
stability ~bottom subplot! for a TLM in the triangular lattice atC
50.2. One can readily observe the presence of the oscillatory
stability in the eigenfrequency spectrum. The bottom panel sh
the critical eigenfrequency vs the coupling constantC. The solid
line shows the distance of the eigenfrequency from the band edg
the continuous spectrum. After the collision, which takes place
C50.1, a quartet of complex eigenvalues emerges; the abso
value of their imaginary part is shown by the dashed line.
01660
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It should be remarked that, in the 2D lattice, the TLMs a
solutions carrying vorticity~topological charge! S51 @54#
~although they are different from vortices proper; see belo!.
The simplest way to see this is by recognizing that TL
configurations emulate the continuum-limit expression cou,
whereu is the angular coordinate in the 2D plane, i.e., t
real part of exp(iu), the latter expression carrying vorticity 1
It should also be added that, after the onset of the oscilla
instability, TLM solutions have been found to transfor
themselves into the fundamental~single-site-centered! ILM
configurations, which is possible as the topological charg
not a dynamical invariant in lattices@54,56#.

B. Hexagonal and triangular vortex solitons

Going beyond TLMs, it is appropriate to consider possib
lattice solitons which conform to the symmetry of the TA
HC lattice. In fact, these are the most specific dynami
modes supported by the lattices. Examples of this sort in

n-
s

of
t
te

FIG. 8. The same as Fig. 7, but for the honeycomb lattice. T
top panel shows the solution atC50.2; the bottom panel shows th
distance of the internal-mode eigenfrequency from the band e
~solid line!, and the absolute value of the imaginary part of t
eigenvalue quartet forC.0.1375~dashed line!.
9-6
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SOLITONS IN TRIANGULAR AND HONEYCOMB . . . PHYSICAL REVIEW E 66, 016609 ~2002!
TA lattice are the ‘‘hexagonal’’ ILMs shown in Fig. 9. Th
top panel of the figure shows the profile of these modes
the anticontinuum limit, and the bottom panel displays t
actual examples of these modes. The top subplot shows
hexagonal ILM forC50.038, when it is stable, while th
bottom subplot shows the mode atC50.218, after the onse
of three distinct oscillatory instabilities. The first and seco
instabilities set in atC'0.064 andC'0.084, respectively,
while the final eigenvalue quartet appears atC'0.184.

Measuring the topological charge of this solution arou
the contour in the top panel of Fig. 9, we find~since each

FIG. 9. The top panel shows the anticontinuum-limit profile
the topologically charged hexagonal ILM in the triangular latti
~and a contour around the solution; each line in the contour re
sents a phase change byp). The bottom panel shows two example
of such a soliton. The solution is in each case shown in a grays
contour plot on the left, while its eigenfrequency spectrum is sho
on the right. The top subplot of the bottom panel corresponds to
stable soliton atC50.038, while the bottom subplot represents
unstable one atC50.218. In the latter case, three~in terms of the
geometric multiplicity; the algebraic multiplicity is five! quartets of
eigenvalues have become unstable.
01660
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jump from11 to 21 can be identified as ap phase change!
that the whole solution has a total phase change of 6p; hence
its topological charge~vorticity or ‘‘spin’’ ! is S53. Then, the
presence of three oscillatory instabilities agrees with a rec
conjecture@56#, which states that the number of negativ
Krein-sign eigenvalues~and hence the number of potentie-

le
n
e

FIG. 10. The time evolution of the unstable solution from Fig
~for C50.218) is shown here for the triangular lattice. The top l
panel shows the solution att5200. The ‘‘negative image’’ of the
solution is shown once again for clarity. The top right panel sho
the time evolution of the center-of-mass coordinates
the soliton, defined as xc[(n,mnuun,mu2/(n,muun,mu2, yc

[(n,mmuun,mu2/(n,muun,mu2. The two bottom panels show the evo
lution of the real~solid line! and imaginary~dashed line! parts of
the lattice field at two sites closest to the soliton’s center~subscripts
1 and 2 pertain, respectively, to the sitesn510, m511 and n
510, m59). A clear conclusion is that the instability sets in att
'50, and it eventually results in the transformation of the hexa
nal ILM into a stable fundamental ILM localized around a sing
lattice site.

FIG. 11. A triangular ILM solution in the honeycomb lattice
and the corresponding spectral plane, are shown forC50.09. So-
lutions of this type were found to be unstable forall values ofC.
9-7
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KEVREKIDIS, MALOMED, AND GAIDIDEI PHYSICAL REVIEW E 66, 016609 ~2002!
oscillatory instabilities! coincides with the topological charg
of the 2D lattice soliton. However, if one examines mo
carefully the stability picture, one finds that, due to the sy
metry of the solution, two of these eigenvalues have mu
plicity 2. Hence, the conjecture needs to be refined, to t
into regard the potential presence of symmetries. The con
ture thus revised states that the topological charge of
solution should be equal to the geometric~but not necessarily
algebraic! multiplicity of the eigenvalues with negativ
Krein signature.

It is natural to ask then to what configuration this hexag
nal ILM will relax once it becomes unstable. To address

FIG. 12. The top panel shows the profile of the honeycom
shaped ILM in the anticontinuum limit in the honeycomb lattic
together with a contour around the solution. Each line in the con
represents a phase change byp, adding up to 10p; hence the solu-
tion has vorticityS55. An actual solution is shown in the bottom
panel for C50.0475, when it is linearly stable, having fiv
negative-Krein-signature internal modes~top subplot!. The bottom
subplot of the bottom panel pertains to the caseC50.43, where all
five oscillatory instabilities have developed. Four quartets of eig
frequencies are clearly discernible. The fifth quartet is shown in
inset of the corresponding spectral-plane plot.
01660
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issue, we performed direct numerical simulations forC
50.218. Results are shown in our subplots of Fig. 10.
particular, the top left panel shows the solution att5200~the
configuration att50 was the unstable hexagonal ILM!. It
can clearly be observed that the instability that sets in aro
t'50 ~according to the other three subplots! transforms the
hexagonal vortex into a fundamental~zero-vorticity! ILM;
recall that such an outcome of the instability developmen
possible because the vorticity isnot conserved in lattice sys
tems@54#.

For the HC lattice, a vortex soliton of a triangular for
was found; such an example is shown in Fig. 11 forC
50.09. We have found that this solution is unstable forall
valuesof C.

Another vortex soliton, with a honeycomb shape, was a
found in the HC lattice; see Fig. 12. This one isstableat a
sufficiently weak coupling. If a contour is drawn around th
solution ~shown in the top panel of the figure for the an
continuum limit!, the net phase change is found to be 10p;
hence the corresponding topological charge isS55. In ac-
cordance with the conjecture mentioned above, when the
lution is stable, we find five internal modes with negati
Krein signature. These modes eventually lead, as the c
pling is increased, to five oscillatory instabilities. In the bo
tom panel of Fig. 12, the top subplot shows the case w
C50.0475, when the honeycomb-shaped vortex soliton
the HC lattice is linearly stable. The bottom subplot featu
the presence of five eigenvalue quartets in the caseC
50.43, when all five oscillatory instabilities have been ac
vated. The first instability occurs atC50.085, the second a
0.1, the third at 0.1375, the fourth at 0.2025, and the fifth s
in at C50.4025.

To illustrate the result of the development of the instab
ity of the latter vortex in the case in which it is unstable, w

-

r

-
e

FIG. 13. The evolution of the unstable honeycomb-shaped I
configuration forC50.43. The panels have the same meaning a
Fig. 10. The lattice-field configuration is shown in the top left pan
for t5500. One predominant single-site pulse is present in the c
figuration. The other three panels show the time evolution of
center-of-mass coordinates and of the real and imaginary par
the field at specific lattice sites~as in Fig. 10!, clearly indicating that
the instability sets in att'60.
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have again resorted to direct numerical integration of Eq.~1!.
An example is shown in Fig. 13 forC50.43. At t'500, only
one main pulse is sustained. Hence, in this case too,
multiply charged topological soliton is transformed, throu
the instability, into the stable~for this value ofC) fundamen-
tal zero-vorticity ILM.

IV. CONCLUSION

In this work, we have studied a paradigm nonlinear latt
dynamical model, namely, the DNLS equation, in two spa
dimensions for nonsquare lattices. The triangular and hon
comb networks were considered, as the most important
amples of Bravais and non-Bravais 2D lattices, which
relevant to chemical and optical applications.

In the case of nearest-neighbor interactions, it was fo
that the instability thresholds for the fundamental solut
centered at a single lattice site depend on the coordina
number. The instability appears in the triangular lattice a
smaller value of the coupling constant than in the squ
lattice, while the opposite is true for the honeycomb latti
The effect of the long-range interactions was also exami
in this context. It was found that these interactions accele
or delay the onset of the instability if they have the same s
as the nearest-neighbor coupling, or the opposite sign.
grams in the two-parameter plane were constructed iden
d

J.

d
er

D

re

n

01660
he

e
l
y-
x-
e

d

n
a
e
.
d
te
n
a-
y-

ing regions of stability and instability in the presence of bo
the short- and long-range coupling.

More complicated lattice solitons, which essentially e
tend to several lattice sites, were also examined. A protot
cal example of the extended solitons are twisted modes,
which the phenomenology was found to be similar to that
the square lattice, but with, once again, appropriately shif
thresholds. We have also examined solutions with a hig
topological charge, which play the role of fundamental v
tices in the triangular and honeycomb lattices, their vortic
being, respectively,S53 and S55. The stability of these
vortices was studied in detail. When instabilities occurr
their outcome was examined by means of direct time in
gration, showing the transformation into a simple fundam
tal soliton with zero vorticity.

Further steps in the study of localized modes in the
nonlinear lattices may address traveling discrete solitons
well as generalization to the three-dimensional case. In te
of applications, nonlinear photonic band-gap crystals ba
on nonsquare lattices are relevant.
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